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Abstract

The main objective of this paper is to propose an adaptive mesh re®nement procedure for ®nite element models in

limit analysis. We use an `a posteriori' indicator based on the local directional interpolation error and a recovering

scheme to compute second derivatives of the ®nite element solution. The proposed mesh adaptation process gives

improved results in localizing regions of rapid or abrupt variations of the variables, whose location is not known a

priori. Limit analysis of bodies in plane strain and plane stress is considered in the applications. Ó 2001 Elsevier Science

Ltd. All rights reserved.
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1. Introduction

The main objective of this paper is to propose an adaptive mesh re®nement procedure for limit analysis.
This procedure uses an a posteriori estimator of the local directional interpolation error and a recovering
scheme to compute the ®rst and second derivatives of the ®nite element solution. The strategy presented
here is an extension of the one presented by Borges et al. (1998, 1999) and Feij�oo et al. (1997) wherein the
estimator and the adaptive process were only de®ned for linear ®nite elements. Here we generalize the
indicator and the adaptive procedure to include quadratic triangles.

The advantages of adapting meshes are well known. Furthermore, we place particular emphasis on the
anisotropic mesh adaptation process, generated by the proposed directional indicator. The goal of that
approach is to achieve a mesh-adaptive strategy accounting for mesh size re®nement, as well as rede®nition
of the oriented element stretching. This way, along the adaptation process, the mesh turns aligned with the
direction of maximum curvature of the function graph. This mesh adaptation procedure gives improved
results in localizing regions of rapid or abrupt variations of the variables, whose location is not known a
priori (Peir�o, 1989; Peraire et al., 1990; Dompierre et al., 1995; Verf�urth, 1996; Almeida et al., 1998;
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Buscaglia and Dari, 1997). As a result, accurate representations of shocks, boundary layers, and other
discontinuities are obtained.

Limit analysis deals with the direct computation of the load producing plastic collapse of a body ± a
phenomenon where, under constant stresses, kinematically admissible plastic strain rates take place. Lo-
calized plastic deformations or slip bands are present in many collapse situations. The accuracy in nu-
merical solutions of limit analysis is seriously a�ected by local singularities arising from these localized
plastic deformations. In limit analysis, an a priori error estimate, in a local sense as provided by the
standard error analysis in the ®nite element method, is not available. Those facts disclose the need of a mesh
re®nement indicator which can be extracted a posteriori from the numerical solution.

Another feature of numerical limit analysis in¯uenced by an oriented mesh adaptation procedure is the
locking phenomenon.

The locking characteristics of ®nite elements are important in plane strain or axisymmetric limit analysis.
Indeed, when Mises yield function is assumed, the exact velocity ®eld satis®es the incompressibility con-
dition. In these cases, the classical three-node ®nite element, that use linear interpolants for the velocity
®eld, has a strong tendency to lock so that we use it only in plane stress problems. A curved triangular
mixed element was specially created to face the locking problem (Borges et al., 1996) in the framework of
limit analysis. For this element, an e�cient adaptive strategy demands an error distribution assumption
richer than piecewise constant by element.

In this paper, ®rstly, the theoretical framework of limit analysis is presented. Following this, some issues
of the adopted techniques for estimating the interpolation error, based on derivative recovery schemes, are
discussed. Finally, we propose a directional interpolation error estimator and adaptive mesh re®nements
for limit analysis applications.

2. Limit analysis

Under the assumption of proportional loading, the limit analysis problem consists in ®nding a load
factor a such that the body undergoes a plastic collapse when subject to the reference loads F uniformly
ampli®ed by a. In turn, a system of loads produces plastic collapse if there exists a stress ®eld in equilibrium
with these loads which is plastically admissible, and related, by the constitutive equations, to a plastic strain
rate ®eld being kinematically admissible (Lubliner, 1990).

Thus, the limit analysis problem consists in ®nding a 2 R, a stress ®eld T 2 W 0, a plastic strain rate ®eld
Dp 2 W and a velocity ®eld v 2 V such that

Dp � Dv; v 2 V ; �1�

T 2 S�aF �; �2�

T 2 oX �Dp�: �3�
The meaning of these relations and the notation are explained in the following. Eq. (1) imposes that the

collapse plastic strain rate Dp is related to a kinematically admissible velocity ®eld v by means of the tangent
deformation operator D (V and W are the space of admissible velocities and strain rate ®elds, while V 0 and
W 0 are the spaces for loads and stress ®elds). The symbol S�aF � in Eq. (2) denotes the set of all stress ®elds
in equilibrium with the given system of forces aF , that is satisfying the principle of virtual power:Z

B

T �DvdB � a
Z
B

bvdB

�
�
Z

Cs

svdC

�
8v 2 V ; �4�

where b and s are body and surface loads, respectively, and Cs, the region of C where tractions are pre-
scribed.
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In Eq. (3), the constitutive relation describing an elastic ideally plastic material is given. The symbol
oX �Dp� denotes the subdi�erential of the plastic dissipation function X, which is the set of all stress ®elds,
such that

X �Dp�� ÿ X �Dp�P
Z
B

T � �Dp� ÿ Dp�dB 8Dp� 2 W : �5�

The dissipation function is related to the set P of plastic admissible stress ®elds by

X �Dp� � sup
T � 2 P

Z
B

T �DvdB: �6�

Frequently, the set P is de®ned as

P � fT 2 W 0 jf �T �6 0 inBg; �7�
where the above inequality is then understood as imposing that each component fk, which is a regular
convex function of T, is non-positive. Then, at any point of B , Eq. (3) is equivalent to the normality rule
Dp � rf �T � _k , where rf �T � denotes the gradient of f , and _k is the bm-vector ®eld of plastic multipliers. At
any point of B, the components of _k are related to each plastic mode in f by the complementarity
condition _kP 0 , f 6 0 and f _k � 0 (these inequalities hold componentwise).

The classical extremum principles of limit analysis, that is the kinematical, statical and mixed formu-
lations, can be derived from the optimality conditions (1)±(3) (Christiansen, 1996; Borges et al., 1996). The
discretized versions of these formulations lead to a single type of ®nite dimensional problem, which can be
cast in four strictly equivalent forms, namely the statical, mixed and kinematical discrete formulations, and
the set of discrete optimality conditions.

2.1. Discrete model

The discrete limit analysis problem consists in ®nding a load factor a 2 R, a stress vector T 2 Rq, a
velocity vector v 2 Rn and a plastic multipliers vector _k 2 Rm such that the system represented by a de-
formation matrix B : Rn ! Rq and a convex function f �T � 2 Rm undergoes plastic collapse for some load
being proportional to a given force vector F 2 Rn. It is assumed that all rigid motions are ruled out by the
kinematical constraints so that the kernel of matrix B contains only the null velocity vector.

The discretized version of the limit analysis formulation leads to a ®nite dimensional problem that can be
seen as a discrete version of Eqs. (1)±(3), that is

Bvÿrf �T � _k � 0; �8�

BT T ÿ aF � 0; �9�

Fv � 1; �10�

fj�T � _kj � 0; fj�T �6 0; _kj P 0; j � 1; . . . ;m: �11�
A Newton-like algorithm for solving this discrete problem is described by Borges et al. (1996) and is not

discussed in the present work.
Many issues arise concerning the choice of a ®nite element interpolation, such as convergence and

(global) error estimate. In the following, we comment brie¯y on the choice of the elements and also the
estimator for the interpolation error used here as a mesh re®nement indicator.
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For plane strain, and in solids with symmetry of revolution, we use a curved triangular mixed elements
having (i) six nodes intended for the Co quadratic interpolation of geometry and velocities, (ii) three nodes,
at vertices, for the discontinuous linear interpolation of the deviatoric stresses, and (iii) piecewise constant
interpolation for the mean stress (Borges et al., 1996). This mixed element is specially created to face the
locking problem.

Localized plastic deformations or slip bands are present in most collapse situations. Accuracy in the
numerical solution of limit analysis is seriously a�ected by local singularities arising from these localized
plastic deformations. One possible approach in order to overcome this di�culty is to add more grid-points
where the solution presents those singularities. Accordingly, it becomes necessary not only to identify these
regions but also to obtain a good equilibrium between the re®ned and unre®ned regions, for an optimal
overall accuracy (Verf�urth, 1996).

The choice of a variable to be used to control the adaptive process is not obvious. To capture the
discontinuities, the natural choice is one of the components of the velocity vector ®eld provided we can
estimate in advance which component is suitable to this aim. However, this is not an easy task for a general
problem. Unlike the velocity ®eld, the scalar ®eld of plastic multipliers may be used as a control variable
without the previous disadvantage. These plastic factors are proportional to the modulus of the plastic
strain rates, as indicated by Eq. (8). Hence, the plastic multipliers clearly indicate the region where localized
plastic deformations or slip bands are present. As a consequence, the local singularities arising from these
localized plastic deformations are also detected in this way. Based on this argument, the scalar ®eld of
plastic multipliers appears to be a good choice as a control variable and it is adopted for most of the
applications.

Finally, it is worth discussing whether, for quadratic triangles, the second derivatives are able to assure
reliable estimates for the interpolation error of the computed solution or we need to imagine an indicator
based on higher derivatives of the interpolated ®eld. While aiming to answer this question we note the
following:

(1) According to Dompierre et al. (1995), even when using interpolation functions of degrees higher
than one, the informations provided by second derivatives are su�cient to estimate the interpolation error.

(2) In the mixed element used here, the interpolations are Co quadratic for velocities and geometry,
piecewise constant for mean stress, and piecewise linear for deviatoric stress. This determines, in the discrete
version of limit analysis, Eqs. (8)±(11), three plastic admissibility constraints at the vertices, ensuring plastic
admissibility throughout the element. Accordingly, the associated plastic ¯ow equations involve three
plastic multipliers for each element, de®ned at the vertices of the triangle (Borges et al., 1996). This suggests
a linear approximation for the smoothed scalar ®eld of plastic multipliers.

The above arguments justify the application of a directional indicator for the interpolation error, based
on second derivatives, using the modulus of the strain rate ®eld as control variable in the adaptive mesh
re®nement strategy for limit analysis.

3. Estimator for the interpolation error

In the methods considered here, gradients and/or Hessians of the solutions, obtained on a given mesh,
are smoothed and then used in the interpolation error estimator. It is well known that in elliptic problems,
the derivatives of the approximate solution, uh 2 Vh (Vh is the interpolation space) are superconvergent in
some interior points of the elements. That is, in these points the derivatives of the ®nite element solution
exhibit higher accuracy than the one normally expected. Although no analogous result exists for limit
analysis, the proposed indicator is motivated by superconvergence. That is, it is focused on recovering the

1710 L. Borges et al. / International Journal of Solids and Structures 38 (2001) 1707±1720



Hessian with a higher order of accuracy than that naturally obtained from the ®nite element approxima-
tion. Therefore, in the proposed procedure, it is necessary to recover the Hessian matrix from the infor-
mation given by the ®nite element solution uh. Almost all algorithms aimed to recover the Hessian matrix
use ®rst derivative information. Recovering ®rst and second derivatives are the main issues of the following
section.

3.1. The interpolation error as an indicator of the approximate solution

We present an anisotropic a posteriori error estimator for the di�erence between a given function u and a
discrete function U 2 Vh which is a good approximation of u in X in the sense that

kuÿ UkLp�X�6CkuÿPukLp�X� �12�
with P : W 2;p�X� ! Vh denoting an operator whose approximation properties are similar to the Clement
interpolation operator (Cl�ement, 1975). That is (Almeida et al., 1998), there exists a constant C such that

kuÿ uhkLp�X� ' CkHR�uh�x���xÿ x0��xÿ x0�kLp�X�; �13�
where HR�uh�x�� denotes the recovered Hessian matrix obtained from the information given by the ®nite
element solution uh. This shows that the interpolation error at some point x, where kxÿ x0k is small en-
ough, is governed by the behavior of the second order derivative. Thus, the interpolation error is not
distributed in an isotropic way around the point x0, i.e., the error depends on the direction xÿ x0 and the
recovered Hessian matrix value in this point, HR�u�x��.

The above result suggests the use of Eq. (13) as a directional error estimator in the terminology used by
Peir�o (1989) and Peraire et al. (1990). Since the recovered Hessian matrix is not positive de®nite, it cannot
be taken as a metric tensor. As an alternative, Peir�o introduced the metric tensor:

G � QKQT; �14�
where Q is the matrix of eigenvectors of the recovered Hessian matrix, the matrix K � diagfjk1j; jk2jg, and
{jkij; i � 1; 2}, are the absolute value of the associated eigenvalues �jk1j6 jk2j�. According to this de®nition,
the metric tensor ®eld G is at least positive semi-de®nite. In particular, a zero eigenvalue poses no di�culty
since it leads to in®nite mesh sizes that are inhibited by the element size limitation or by the bounds of the
computational domain.

Following the above ideas, Dompierre et al. (1995), introduced an error estimator associated with the
size of element edges and Buscaglia and Dari (1997) used Eq. (14) in a quality mesh indicator. The in-
terpolation error estimator introduced herein is a variation of the ®rst one. Instead of considering an error
estimator associated to the element edge length, it is proposed to use another one that provides a measure
of the second derivative contribution in each element (Ven�ere, 1996). Considering a given ®nite element
mesh I of the domain X, the indicator value corresponding to each element T 2 I is de®ned by the fol-
lowing expression (Feij�oo et al., 1997; Verf�urth, 1996; Ainsworth and Oden, 1997; Zienkiewicz and Zhu,
1987):

gT �
Z

T
G�uh�x0���x�

�
ÿ x0��xÿ x0��pdX

�1=p

; �15�

where x0 is the center of this element.
The global indicator g is given by

g �
X
T2I

gp
T

 !1=p

: �16�
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3.2. Derivatives recovery

Several approaches have been proposed, in the framework of the Finite Element Method, in order to
recover ®rst derivatives. This subject may be found, for instance, in Zienkiewicz and Zhu (1992a,b). The
weighted average is one among these procedures, and it is brie¯y summarized in the sequel.

The recovery approach quoted weight average consists of turning the inter-elements discontinuous ®eld
ruh into a continuous ®eld rRuh. This is made by employing the same element basis functions used to
construct the approximation uh to compute the ®eld ruh. Then, a weighted average of ruh, computed on
the elements surrounding a node N is adopted as the value rRuh�XN � of the recovered gradient at this node
(XN is the coordinate of node N ). The weighted average is computed using weights given by the inverse of
the distance between the node N and the points of superconvergence of the gradient (the center of the
element in the case of linear triangles and the Gauss points near midside nodes in the case of quadratic
triangles (Zienkiewicz and Zhu, 1992a,b). The weights can also be de®ned by the area of the elements
surrounding the node.

Second derivatives can also be recovered by using the same approaches used for the ®rst derivative
recuperation. In fact, taking rRuh as a new ®eld, we can reapply the algorithm in order to ®nd rR�rRuh�.
The symmetric part of the approximation is retained in order to ensure the symmetry of the recovered
Hessian matrix.

In order to approximate functions presenting strong variations in the derivatives, the adapted mesh
turns to be oriented by means of the stretching of its elements in the direction of maximum curvature of
the function graph. Whenever this stretching is very large, it may cause poor precision when computing
weighted averages. To overcome this situation, the original domain XT is locally transformed into a stan-
dard unstretched domain X�T . For instance, when using mesh generators based on the advancing front
technique (Peir�o, 1989; Peraire et al., 1990; Fancello et al., 1990, 1991; de Oliveira et al., 1997; Dari and
V�enere, 1994; Ven�ere, 1996) this domain transformation is naturally chosen in accordance with the domain
mapping which is a part of the mesh generation algorithm. This is the procedure adopted in the present
work and is described in the following:

Considering the neighborhood of an arbitrary node, N (Fig. 1), the mesh generation algorithm tends to
create triangular elements which are equilateral when viewed in the transformed domain given by the
following operator:

S�N� � 1

s�N� � h�N� e1 
 e1 � 1

h�N� e2 
 e2; �17�

Fig. 1. Transformed domain de®ned by the advancing front technique.
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where ei�N�; i � 1; 2 are the eigenvectors of the Hessian matrix HR�uh�N��, the length h�N� is the element
size in the e2 direction, and s P 1 is the element stretching in the e1 direction of the generated mesh at node
N. Those parameters are all dynamically de®ned along the mesh adaptation process. The selection of these
parameters is discussed in the next section.

Finally, the mapping which transforms the stretched element into the standard (equilateral) triangle is
written as

xM � S�N��XM ÿ XN �: �18�
The notation above is as follows: M is a generic point belonging to some element adjacent to the node N;

the coordinates XN , XM and xM denote the point N and M before and after the mapping, respectively.

4. Adaptive procedure

The present adaptive procedure takes into account the global error indicator, g, given by Eq. (16), for
each triangulation Ik. Then, the objective is to ®nd a new mesh Ik�1, with a given number of elements Nel.
This new ®nite element mesh is generated trying to produce a uniform distribution of the interpolation
error estimator over all elements.

Our remeshing algorithm is based on the advancing front technique (Fancello et al., 1990, 1991; Oliveira
et al., 1997; Dari and V�enere, 1994; V�enere, 1996). In this technique, the mesh generator tries to build
equilateral triangles in the metric de®ned by the variable metric tensor S de®ned by Eq. (17). To evaluate
the mapping parameters, we proceed as follows:

(1) Compute gT in each element and then the global quantity g.
(2) Given a number of elements Nel in the new adapted mesh, the expected local indicator is given by

g� � g��������
Nel
p : �19�

(3) The decreasing or increasing rate of the element size is estimated by

bT �
g�

gT

� �1=3

: �20�

From this rate distribution bT , computed elementwise, nodal values are then obtained. Di�erent ap-
proaches can be selected to this end. For instance, this operation may be based on the same scheme used to
compute derivatives. The resulting nodal rate value is denoted by b�N�.

(4) The size of the new element, to be generated at node N , is

hk�1�N� � b�N�hk�N�: �21�

If necessary, the threshold values for the new element size are then enforced as

a � hk 6 hk�16 a � hk 6 L; �22�
where L represents the characteristic length of the domain X. The two parameters above, a and a, are used
in order to ensure progressive mesh adaptation.

(5) The stretching factor s at node N is de®ned by

s�Nk� �
�������
jk2j
jk1j

s
; �23�
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where jk1j6 jk2j are the absolute eigenvalue of the Hessian matrix HR�uh�N��. This stretching factor must
be bounded in order to ensure that the new length of the element in the direction e1; shk�1, is not greater
than the characteristic length L of the domain X, i.e., s6L=hk�1.

(6) The new size distribution, hk�1 is then uniformly scaled. Due to the limitation on the values of h and s,
the number of elements in the new adapted mesh may be di�erent from the expected Nel. To enforce the
required new number of elements, the elements size h is modi®ed as follows:

hk�1  
�������������
Nelnew

Nel

r
hk�1 with Nelnew � 4���

3
p

Z
X

2

sh2
dX: �24�

The adaptive strategy described above is repeated until the interpolation error estimator in the mesh, Ik,
becomes lower than a given admissible relative error c, that is until

gk

�kuhkL2�X� � gk�1=2
6 c: �25�

4.1. Summary of the adaptive mesh algorithm

We summarize below the proposed algorithm for an adaptive mesh re®nement strategy for limit analysis
problems:

Adaptive procedure for limit analysis

Repeat

1. Limit analysis

· Apply the Newton-like algorithm for solving the discrete limit analysis. Choose a scalar ®eld to be used
to control the adaptive process.

2. First derivative recovery (Section 3.2)
For each node in the triangulation Ik

· De®ne the patch associated to node N.
· Compute the metric tensor S�N�, from information about the mesh shape around the node N, de-

®ned by the known parameters s�N�, h�N�, e1 and e2.
· Transform all the elements of the patch.
· Compute the gradients graduh in each transformed element.
· Using the recovering algorithm, compute grad Ruh�N�.
· Transform the gradient grad Ruh�N� to the original domain, by means of: rRuh�N� �

ST�N� grad Ruh�N�.
3. Second derivative recovery

· Compute rR�rRuh�N��, by repeating step 2, for each component of rRuh�N�.
· Retain the symmetric part of rR�rRuh�N�� to de®ne HR�uh�N��.

4. Interpolation error estimation (Section 3.1.)
For each element in the the triangulation Ik

· Compute the metric tensor G.
· Compute the local indicator gT .
Compute the global indicator g
For a given Nel, estimate g�

5. Adaptive procedure

For each node in the the triangulation Ik

· Compute hk�1, sk�1, �e1�k�1 and �e2�k�1.
· Scale hk�1.
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6. Generate a new mesh Ik�1.
Until gk

kuhkL2�X��gk� �1=2 6 c

5. Numerical applications

The ®rst two examples of application are plane stress problems where linear triangles are used. A third
example, under plane strain condition, is then presented as another application of the adaptive limit
analysis procedure combined with the mixed element mentioned before. In these applications, the materials
obey the Mises yield criterion, with the yield stress denoted by rY .

5.1. Square slab with symmetrical internal slit

Limit analysis of a square slab with a symmetrical internal slit subjected to traction is considered here.
The theoretical collapse mechanism of this slab presents localized deformation in the form of slip bands
emanating from the roots of the crack. This is also obtained in the numerical solution, as shown in Fig. 2.

We analyze the behavior of the adaptive strategy, when choosing the x-component of the velocity ®eld
or, alternatively, the plastic multiplier ®eld, as the control variable. As shown in Fig. 3, both are e�ective as
a basis for the directional error estimator. The isovalues for the plastic deformation and for the local

Fig. 2. Slab with an internal slit ± collapse load evolution and velocity ®eld.
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interpolation error show that the proposed procedure is also e�ective in capturing the localized plastic
deformation. Indeed, it increases the nodal points of the mesh only in the neighborhood of the region where
the discontinuities take place. Moreover, it constructs elements which are aligned and stretched in the
direction of slip bands.

We obtain 27% reduction in the collapse load approximation (Fig. 2) by means of ®ve adaptation steps.
It is worth noting that the kinematical principle adopted in this case yields an upper bound to the exact
collapse load and so, this reduction during the adaptive process is expected.

5.2. A thin square slab, with a central circular hole and subject to traction

This is a plane stress problem that was analyzed considering three values of the ratio between the di-
ameter d of the hole and the length L of the slab side. The numerical results for the collapse factor are
plotted in Fig. 4 and compared to analytical lower and upper bounds (Gaydon and Mc Crum, 1954).

For d=L � 0:2, the velocity ®eld presents a slip band which runs from the unstressed edge of the slab
and meets the hole in the transversal axis of symmetry. The behavior of this numerical velocity ®eld
complies with that foreseen in the analytical solution that identi®es slip bands for ratios d=L lower than 0.4.
The analytical collapse mechanism for d=L > 0:6 imposes that each quarter of the slab rotates as a rigid
body producing plastic hinges at its narrowest parts, that is, along the axes of symmetry. All of those kind
of mechanisms are detected in the numerical solution, as can be observed in Fig. 4, where plastic region is
the darkest one.

Fig. 3. Slab with an internal slit ± error, mesh and plastic deformation.
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5.3. Frictionless extrusion through a square die

In the limit analysis model for extrusion processes, we consider a state of steady plastic ¯ow. In this
process, a large amount of plastic deformation has already taken place, and the stress and velocity ®elds are
taken as constant in time in an Eulerian sense (Lubliner, 1990). Assuming the Mises yield criterion and
plane strain, the slip-line theory applies. This analytical approach gives, in general, an upper bound for the
piston pressure that produces unbounded plastic ¯ow. However, for the present situation, of both prob-
lems, the slip-line solution provides not only an upper bound for the extrusion pressure but the exact
pressure (Lubliner, 1990).

We have simulated two plane strain frictionless extrusion processes. In the ®rst case we consider a re-
duction of 2=3 and in the second one the reduction is 1=5 . Because of the symmetry, we modeled only the
upper half, as shown in Figs. 5 and 6.

Figs. 5 and 6 illustrate the numerical solutions obtained after the adaptation steps. In the two cases, the
adaptive strategy made it possible to capture the slip bands and to identify the regions that present dis-
tributed plastic deformation. These regions are de®ned by the colorful part in the ®gure representing the
isovalues for plastic multiplier ®eld. Notice that the numerical solution is very close to the analytical slip-
line ®eld due to Hill (Lubliner, 1990), sketched besides the numerical solution.

For the 2=3-reduction problem, and at the end of the adaptation process, we attain an extrusion pressure
of 1:9690rY . The exact value, obtained by the slip-line theory, is 1:9790rY . In the same way, for a reduction
of 1=5 the numerical solution obtained is 1:4781rY and the analytical one is 1:4842rY . Therefore, in the two
cases, the di�erence between the numerical extrusion pressure and the analytical one is no greater than 0:5%.

Fig. 4. Slab with circular cutout ± collapse load, ®nal meshes and plastic region.
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6. Conclusions

An anisotropic adaptive procedure, based on an a posteriori estimate of the local directional interpo-
lation error, and using recovery techniques for the Hessian matrix has been presented in this paper. The
proposed method is able to capture discontinuities arising from localized plastic deformations during

Fig. 5. Frictionless extrusion through a square die ± reduction 2=3.

Fig. 6. Frictionless extrusion through a square die ± reduction 1=2.
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plastic collapse. As a consequence, the mesh adaptation signi®cantly improves the numerical evaluation of
the collapse load.

The numerical applications con®rm the feasibility of the approach, that is, the computation of the mesh
re®nement indicator is less expensive than the calculation of the numerical solution. In all the analyzed
applications, the computational time for error evaluation is about 1% of the whole time spent in the limit
analysis algorithm.

Other recovery techniques can be also adopted instead of the weighted average proposed herein. One of
them is the path recovery technique introduced by Zienkiewicz and Zhu (1992a,b). This approach, associ-
ated to an interpolation error estimator based on second derivative recovery, for linear ®nite elements, was
presented by Borges et al. (1998, 1999) in the context of limit analysis, and by Almeida et al. (1998) for
computational ¯uid dynamics.

In this work, the new adapted ®nite element mesh is generated trying to produce a uniform distribution
of the local indicator over all elements. Almeida et al. (1998) proposed an adaptive analysis in which the
mesh is adapted with the aim to distribute the indicator local values with minimum computational cost
(optimal adaptive analysis). In this procedure, for a given number of desired elements, a new mesh is
generated such that the distribution hnew�N� for all nodes, minimizes the global indicator value. This
procedure can also be incorporated into the limit analysis procedure.
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